LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2013
MT 5508/MT 5502-LINEAR ALGEBRA

Date: 13/05/2013
Dept. No. \square Max. : 100 Marks
Time: 9:00-12:00

PART - A

Answer ALL questions:

($10 \times 2=20$ marks)

1. Show that two elements (a, b) and ($c, d)$ of R^{2} are linearly independent if and only if $\mathrm{ad}-\mathrm{bc}=0$.
2. Is the union of subspaces a subspace? Justify.
3. Define homomorphism of a vector space into itself.
4. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$.
5. Define orthnormal set.
6. Normalize ($1+2 \mathrm{i}, 2-\mathrm{i}, 1-\mathrm{i}$) in C^{3} relative to the standard inner product.
7. Show that the matrix $A=\left(\begin{array}{c}\cos \theta \\ \sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\right)$ is orthogonal.
8. If A and B are Hermitian, show that $A B-B A$ is skew Hermitian.
9. Give a characterization of a Hermitian linear transformation.
10. Show that $\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$ is unitary.

$\underline{\text { PART - B }}$

Answer any FIVE questions:

11. Prove that a non empty subset W of a vector space V over F is a subspace of V if and only if $a w_{1}+b w_{2} \in W$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{F}, w_{1}, w_{2} \in w$.
12. For a vector space V over F , prove that if U and W are subspaces of V , then $U+W=\{u+w / u \in U, w \in W\}$ is a subspace of V .
13. Show that the vectors $(1,1$,$) and (-3,2)$ in R^{2} are linearly independent over R, the field of real numbers.
14. If V is a vector space of dimension n and U is a subspace of V , then prove that U has finite dimension and $\operatorname{dim} U \leq n$.
15. For any two vectors u, v in V , Prove that $\|u+v\|\|\leq\|\|u\|+\|v\|$.
16. Prove that $T \in A(v)$ is singular if and only if there exists an element $\mathrm{v} \neq 0$ in V such that $T(v)=0$.
17. If $T \in A(V)$ and $\lambda \in F$, prove that λ is an eigen value of T if and only if $\lambda I-T$ is singular.
18. Find the rank of the matrix $A=\left[\begin{array}{ccc}1 & 5 & -7 \\ 2 & 3 & 1\end{array}\right]$.

PART - C

Answer any TWO questions:

$$
\text { (} 2 \times 20=40 \text { marks })
$$

19. a) Prove that the vector space V over F is a direct sum of two of its subspace, W_{1} and W_{2} if and only if $\mathrm{V}=\mathrm{W}_{1}+\mathrm{W}_{2}$ and $\mathrm{W}_{1} \cap \mathrm{~W}_{2}=\{0\}$.
b) If V is a vector space of finite dimension and w is a subspace of V , then prove that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
20. a) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a homomorphism of two vector spaces over F , and suppose that U hasfinite dimension. Then prove that $\operatorname{dim} \mathrm{U}=\operatorname{dim}=\operatorname{ker} \mathrm{T}+\operatorname{dim} \operatorname{Im} \mathrm{T}$.
b) Is $T: R^{2} \rightarrow R$ defined by $T(a, b)=a b$, a vector space homomorphism? Justify.
21. Prove that every finite - dimensional inner product space has an orthonormal set as a basis.
22. a) Prove that $T \in A(V)$ is invertible if and only if T maps V onto V.
b) Show that any square matrix A can be expressed uniquely as the sum of a symmetric and a skew - symmetric matrices.
